Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.340
Filtrar
1.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382846

RESUMO

Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.


Assuntos
Adenosina Trifosfatases , Caenorhabditis elegans , Animais , Adenosina Trifosfatases/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
Nature ; 625(7995): 572-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172635

RESUMO

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
4.
PLoS Genet ; 20(1): e1011121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227612

RESUMO

Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo
5.
Microbiology (Reading) ; 169(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948297

RESUMO

The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.


Assuntos
Bactérias , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Bactérias/genética
6.
Adv Biol Regul ; 90: 100996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979461

RESUMO

The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.


Assuntos
Fosfatidilinositóis , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas , Humanos , Membrana Celular/genética , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais
7.
PLoS Genet ; 19(10): e1010987, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792890

RESUMO

Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
PLoS Genet ; 19(10): e1010696, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816065

RESUMO

At the transition to stationary phase, a subpopulation of Bacillus subtilis cells can enter the developmental state of competence, where DNA is taken up through the cell envelope, and is processed to single stranded DNA, which is incorporated into the genome if sufficient homology between sequences exists. We show here that the initial step of transport across the cell wall occurs via a true pilus structure, with an average length of about 500 nm, which assembles at various places on the cell surface. Once assembled, the pilus remains at one position and can be retracted in a time frame of seconds. The major pilin, ComGC, was studied at a single molecule level in live cells. ComGC was found in two distinct populations, one that would correspond to ComGC freely diffusing throughout the cell membrane, and one that is relatively stationary, likely reflecting pilus-incorporated molecules. The ratio of 65% diffusing and 35% stationary ComGC molecules changed towards more stationary molecules upon addition of external DNA, while the number of pili in the population did not strongly increase. These findings suggest that the pilus assembles stochastically, but engages more pilin monomers from the membrane fraction in the presence of transport substrate. Our data support a model in which transport of environmental DNA occurs through the entire cell surface by a dynamic pilus, mediating efficient uptake through the cell wall into the periplasm, where DNA diffuses to a cell pole containing the localized transport machinery mediating passage into the cytosol.


Assuntos
DNA Ambiental , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , DNA Ambiental/análise , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , DNA/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37738444

RESUMO

Bacterial ghosts (BGs) are nonviable empty bacterial cell envelopes with intact cellular morphology and native surface structure. BGs made from pathogenic bacteria are used for biomedical and pharmaceutical applications. However, incomplete pathogenic cell inactivation during BG preparation raises safety concerns that could limit the intended use. Therefore, safer bacterial cell types are needed for BG production. Here, we produced BGs from the food-grade Gram-positive bacterium Lactobacillus plantarum TBRC 2-4 by conditional expression of a prophage-encoded holin (LpHo). LpHo expression was regulated using the pheromone-inducible pSIP system and LpHo was localized to the cell membrane. Upon LpHo induction, a significant growth retardation and a drastic decrease in cell viability were observed. LpHo-induced cells also showed membrane pores by scanning electron microscopy, membrane depolarization by flow cytometry, and release of nucleic acid contents in the cell culture supernatant, consistent with the role of LpHo as a pore-forming protein and L. plantarum ghost formation. The holin-induced L. plantarum BG platform could be developed as a safer alternative vehicle for the delivery of biomolecules.


Assuntos
Lactobacillus plantarum , Lactobacillus plantarum/genética , Prófagos/genética , Membrana Celular/genética , Técnicas de Tipagem Bacteriana , Sobrevivência Celular
10.
Adv Sci (Weinh) ; 10(26): e2302131, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409429

RESUMO

The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Imunoterapia , Membrana Celular/genética , Engenharia Genética , Neoplasias/terapia
11.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119545, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481079

RESUMO

The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1ß1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1ß1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.


Assuntos
Proteínas de Membrana , ATPase Trocadora de Sódio-Potássio , Humanos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Sítios de Ligação , Proteínas de Membrana/metabolismo , Lipídeos/genética
12.
Funct Plant Biol ; 50(8): 633-648, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277902

RESUMO

Dynamic changes in aquaporin gene expression occur during seed germination. One example is the ~30-fold increase in Arabidopsis thaliana PIP2;1 transcripts within 24h of seed imbibition. To investigate whether AtPIP2;1 can influence seed germination wild-type Columbia-0, single (Atpip2;1 ) and double (Atpip2;1-Atpip2;2 ) loss-of-function mutants, along with transgenic 2x35S::AtPIP2;1 over-expressing (OE) lines and null-segregant controls, were examined. The various genotypes were germinated in control and saline (75mM NaCl treatment) conditions and tested for germination efficiency, imbibed seed maximum cross sectional (MCS) area, imbibed seed mass, and seed Na+ and K+ content. Seed lacking functional AtPIP2;1 and/or AtPIP2;2 proteins or constitutively over-expressing AtPIP2;1 , had delayed germination in saline conditions relative to wild-type and null-segregant seed, respectively. Exposure to saline germination conditions resulted in Atpip2;1 mutants having greater imbibed seed mass and less accumulated Na+ than wild-type, whereas lines over-expressing AtPIP2;1 had reduced imbibed seed mass and greater seed K+ content than null-segregant control seed. The results imply a role for AtPIP2;1 in seed germination processes, whether directly through its capacity for water and ion transport or H2 O2 signalling, or indirectly through potentially triggering dynamic differential regulation of other aquaporins expressed during germination. Future research will aid in dissecting the aquaporin functions influencing germination and may lead to novel solutions for optimising germination in sub-optimal conditions, such as saline soils.


Assuntos
Aquaporinas , Proteínas de Arabidopsis , Arabidopsis , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Estudos Transversais , Germinação/genética , Proteínas de Membrana/metabolismo , Salinidade , Sementes/genética
13.
Biochim Biophys Acta Biomembr ; 1865(6): 184174, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211321

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID, replicates at intracellular membranes. Bone marrow stromal antigen 2 (BST-2; tetherin) is an antiviral response protein that inhibits transport of viral particles after budding within infected cells. RNA viruses such as SARS-CoV-2 use various strategies to disable BST-2, including use of transmembrane 'accessory' proteins that interfere with BST-2 oligomerization. ORF7a is a small, transmembrane protein present in SARS-CoV-2 shown previously to alter BST-2 glycosylation and function. In this study, we investigated the structural basis for BST-2 ORF7a interactions, with a particular focus on transmembrane and juxtamembrane interactions. Our results indicate that transmembrane domains play an important role in BST-2 ORF7a interactions and mutations to the transmembrane domain of BST-2 can alter these interactions, particularly single-nucleotide polymorphisms in BST-2 that result in mutations such as I28S. Using molecular dynamics simulations, we identified specific interfaces and interactions between BST-2 and ORF7a to develop a structural basis for the transmembrane interactions. Differences in glycosylation are observed for BST-2 transmembrane mutants interacting with ORF7a, consistent with the idea that transmembrane domains play a key role in their heterooligomerization. Overall, our results indicate that ORF7a transmembrane domain interactions play a key role along with extracellular and juxtamembrane domains in modulating BST-2 function.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Membrana Celular/genética , Membrana Celular/metabolismo , COVID-19/metabolismo , Proteínas de Membrana/metabolismo , SARS-CoV-2/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
14.
Hum Genet ; 142(8): 1263-1270, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37085629

RESUMO

Exocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis. Exocyst subunits are essential for cell viability; and mutations or variants in several exocyst subunits have been implicated in human diseases, mostly neurodevelopmental disorders and ciliopathies. These conditions often share common features such as developmental delay, intellectual disability, and brain abnormalities. In this review, we summarize the mutations and variants in exocyst subunits that have been linked to disease and discuss the implications of exocyst dysfunction in other disorders.


Assuntos
Doenças do Sistema Nervoso , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Citoplasma/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Exocitose/genética , Doenças do Sistema Nervoso/genética
15.
Protein Expr Purif ; 207: 106273, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068720

RESUMO

Phosphoglycosyl transferases (PGTs) are among the first membrane-bound enzymes involved in the biosynthesis of bacterial glycoconjugates. Robust expression and purification protocols for an abundant subfamily of PGTs remains lacking. Recent advancements in detergent-free methods for membrane protein solubilization open the door for purification of difficult membrane proteins directly from cell membranes into native-like liponanoparticles. By leveraging autoinduction, in vivo SUMO tag cleavage, styrene maleic acid co-polymer liponanoparticles (SMALPs), and Strep-Tag purification, we have established a robust workflow for expression and purification of previously unobtainable PGTs. The material generated from this workflow is extremely pure and can be directly visualized by Cryogenic Electron Microscopy (CryoEM). The methods presented here promise to be generalizable to additional membrane proteins recombinantly expressed in E. coli and should be of interest to the greater membrane proteomics community.


Assuntos
Escherichia coli , Transferases , Transferases/genética , Escherichia coli/genética , Membrana Celular/genética , Proteínas de Membrana/genética
16.
J Biol Chem ; 299(4): 102972, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738788

RESUMO

Cavß subunits are essential for surface expression of voltage-gated calcium channel complexes and crucially modulate biophysical properties like voltage-dependent inactivation. Here, we describe the discovery and characterization of a novel Cavß2 variant with distinct features that predominates in the retina. We determined spliced exons in retinal transcripts of the Cacnb2 gene, coding for Cavß2, by RNA-Seq data analysis and quantitative PCR. We cloned a novel Cavß2 splice variant from mouse retina, which we are calling ß2i, and investigated biophysical properties of calcium currents with this variant in a heterologous expression system as well as its intrinsic membrane interaction when expressed alone. Our data showed that ß2i predominated in the retina with expression in photoreceptors and bipolar cells. Furthermore, we observed that the ß2i N-terminus exhibited an extraordinary concentration of hydrophobic residues, a distinct feature not seen in canonical variants. The biophysical properties resembled known membrane-associated variants, and ß2i exhibited both a strong membrane association and a propensity for clustering, which depended on hydrophobic residues in its N-terminus. We considered available Cavß structure data to elucidate potential mechanisms underlying the observed characteristics but resolved N-terminus structures were lacking and thus, precluded clear conclusions. With this description of a novel N-terminus variant of Cavß2, we expand the scope of functional variation through N-terminal splicing with a distinct form of membrane attachment. Further investigation of the molecular mechanisms underlying the features of ß2i could provide new angles on the way Cavß subunits modulate Ca2+ channels at the plasma membrane.


Assuntos
Processamento Alternativo , Canais de Cálcio Tipo L , Retina , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Éxons , Subunidades Proteicas/metabolismo , Retina/metabolismo
17.
PLoS Genet ; 19(1): e1010601, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706155

RESUMO

Timely detection and repair of envelope damage are paramount for bacterial survival. The Regulator of Capsule Synthesis (Rcs) stress response can transduce the stress signals across the multilayered gram-negative cell envelope to regulate gene expression in the cytoplasm. Previous studies defined the overall pathway, which begins with the sensory lipoprotein RcsF interacting with several outer membrane proteins (OMPs). RcsF can also interact with the periplasmic domain of the negative regulator IgaA, derepressing the downstream RcsCDB phosphorelay. However, how the RcsF/IgaA interaction is regulated at the molecular level to activate the signaling in response to stress remains poorly understood. In this study, we used a site-saturated mutant library of rcsF to carry out several independent genetic screens to interrogate the mechanism of signal transduction from RcsF to IgaA. We analyzed several distinct classes of rcsF signaling mutants, and determined the region of RcsF that is critically important for signal transduction. This region is bifunctional as it is important for RcsF interaction with both IgaA and OMPs. The mutant analysis provides strong evidence for conformational changes in the RcsF/OMP complex mediating signal transduction to IgaA, and the first direct evidence that OMPs play an important regulatory role in Rcs signaling.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais/genética
18.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
19.
PLoS Genet ; 18(9): e1010375, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121899

RESUMO

In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lipídeos , Monoéster Fosfórico Hidrolases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Prótons , RNA/metabolismo
20.
J Microbiol ; 60(4): 387-394, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344189

RESUMO

A reducing system of SoxR, a regulator of redox-active molecules, was identified as rsxABCDGE gene products and RseC in Escherichia coli through genetic studies. We found that ApbE was an additional component of the reducer system. Bacterial two hybrid analysis revealed that these proteins indeed had multiple interactions among themselves. RseC and RsxB formed the core of the complex, interacting with more than five other components. RsxC, the only cytoplasmic component of the system, interacted with SoxR. It might be linked with the rest of the complex via RsxB. Membrane fractions containing the wild type complex but not the mutant complex reduced purified SoxR using NADH as an electron source. These results suggest that Rsx genes, RseC, and ApbE can form a complex using NAD(P)H to reduce SoxR.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...